

General Certificate of Education

Mathematics 6360

MS04 Statistics 4

Mark Scheme

2008 examination - June series

er with the udes any

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright $\ensuremath{\texttt{@}}$ 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

MS04 - AQA GCE Mark Scheme 200. Mark Sch

Key to mark scheme and abbreviations used in marking

M	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
A	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is	for method and	accuracy			
E	mark is for explanation					
or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct x marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

					MS04 - AQA GCE Mark Scheme 200.
4					MS04 - AQA GCE Mark Scheme 200. Comments
2	Solution		Marks	Total	Comments
1(a)	s = 976.09 v = 9		B1 B1		
	$\chi_9^2 (0.005) = 1.735$		D1		
	$\chi_9^2 (0.995) = 23.589$		B1		
	99% CL for σ are:				Or σ^2
	9×976.09^2 , 9×976.09^2		M1		
	$\sqrt{\frac{9 \times 976.09^2}{23.589}}$ and $\sqrt{\frac{9 \times 976.09^2}{1.735}}$		A 1√		\int on s^2 and χ^2 (with or without $\sqrt{}$)
	000/ CI :- ((02, 2220)		A 1	(AWDT
	99% CI is (603, 2220)		A1	6	AWRT
(b)	eg: Weather conditions		E1	1	Any sensible alternative
	Load				
	Pilot	Total		7	
2(a)	$E(X) = p + 2pq + 3pq^2 +$	Total	M1	,	
()	$= p(1 + 2q + 3q^2 +)$		A1		
	,				
	$=\frac{p}{(1-q)^2}$				
	$=\frac{p}{}$				
	$=\frac{p}{p^2}$				
	= 1		A1	3	AG (working required)
	p				
(b)(i)	6		В1	1	
	$P(X \le 6) = \frac{\left(\frac{1}{6}\right)\left(1 - \left(\frac{5}{6}\right)^6\right)}{\left(1 - \frac{5}{6}\right)}$				
(ii)	$P(X \le 6) = \frac{(6)(1-(6))}{(6)}$		M1		
()	$\left(1-\frac{5}{1}\right)$				
	(0)		A 1		
	= 0.665		A1		(5)6
	P(X > 6) = 0.335		A1	3	$\left(\frac{5}{6}\right)^6 = 0.335 \text{ B3 AWRT}$
(iii)	$1 - \left(\frac{5}{2}\right)^r > 0.9$		M1		
(111)	$1 - \left(\frac{5}{6}\right)^r > 0.9$ $\Rightarrow \left(\frac{5}{6}\right)^r < 0.1$		1411		
	$\Rightarrow \left(\frac{5}{-}\right)^r < 0.1$		A1		
	(6)				1
	$\Rightarrow r > \frac{\log 0.1}{(5)}$		M1		
	$\Rightarrow r > \frac{\log 0.1}{\log \left(\frac{5}{6}\right)}$		M1		
	$\Rightarrow r > \frac{\log 0.1}{\log \left(\frac{5}{6}\right)}$ $= 12.6$ $\therefore r = 13$		M1		

					N. Mr.	4
					MS04 - AQA GCE Mark Scheme 200. Comments Both CAO	0
14 (20m)	Λ				SO	10
04 (cont Q	t) Solution		Marks	Total	Comments	70
3(a)	_	1	B1	10	Both CAO	
`	$\frac{1}{x_2} = 162$ $s_2 = 16.362$		В1	1	Both (AWRT 19.7, 16.4)	
l				1		
l	$s^2 = \frac{8 \times 19.736^2 + 7 \times 16.362^2}{8 + 7}$		M1	1		
l	$=332.\dot{6} \ (=18.239^2)$		A1	1	AWRT 18.2	
ļ			1	1		
l	v = 15		B1	1	AWDT 0 10	
l	t = 2.131		B1	1	AWRT 2.13	
ļ	192 - 162 = 30		1	1		
ļ	∴ 95% CL are:		1	1		
l	$30 \pm \left(2.13 \times 18.239 \sqrt{\frac{1}{9} + \frac{1}{8}}\right)$		M1	1		
l			A1√	1	$$ on t and s^2	
l	95% CI is (11.1, 48.9)		A1	9	AWRT	
(b)	10∉ CI		E1√	1		
` _	∴ reject claim	l	e1√	2	✓ on (a)	
		Total	<u> </u>	11		
4(a)(i)	$F(x) = 1 - e^{-\frac{x}{200}}$		1	1	May be quoted	
	$P(X < 120) = 1 - e^{-0.6}$		M1	1		
l	= 0.451		A1	2	AWRT	
l			1	_		
(ii)	$P(X > 160) = e^{-0.8}$		M1	1		
ļ	= 0.449		A1	2	AWRT	
~•••	D(17 100 17 100)		1	1		
(in)	P(X < 160 X > 120)		1	1		
l	1 .[0.4512+0.4493]		M1	1		
ļ	$=\frac{1-\left[0.4512+0.4493\right]}{1-0.4512}$		A1	1	$=1-e^{-0.2}$]
ļ	= 0.181		A1	3	=1-e AWRT	
l					AWAI .	
(b)	$1 - e^{-\frac{m}{200}} = 0.5$		1	1		
,			N/1	1		
l	$\Rightarrow e^{-\frac{m}{200}} = 0.5$		M1	1		
l	$\Rightarrow m = \ln 0.5 \times (-200)$		M1			
!	= 139 hours	Total	A1	3 10	AWRT	

MS04 - AQA GCE Mark Scheme 200.

MS04 - AQA GCE Mark Scheme 200.

All Schools of the control of

MISU4 (cont				9
Q	Solution	Marks	Total	Comments
5(a)	$f(x) \uparrow$			
	(2)	B1		Shape
	$\begin{pmatrix} \frac{2}{75} \end{pmatrix} \qquad $	B1	2	x–scale
(b)(i)	H_0 : triangular distribution fits	B1		
	*	M1		
	Areas $\frac{1}{6}, \frac{1}{2}, \frac{1}{3}$	A1		
	$O_i = 7 - 28 - 25$ $E_i = 10 - 30 - 20$	A 1√		
	$\chi_{\text{calc}}^2 = \frac{9}{10} + \frac{4}{30} + \frac{25}{20}$	M1		
	= 2.28	A 1		Accept 2.25 to 2.30
	v = 3 - 1 = 2	B1		
	$\chi^2_{\rm crit} = 5.991$	B1		AWRT 5.99
	$2.28 < 5.991 \Rightarrow Accept H_0$			
	Triangular distribution fits data at 5% level of significance	A1√	9	
(ii)	$E_1 < 5 \implies$ combine classes	M1		
	$\left(\frac{1}{6} \times 15 = 2.5\right)$			
	v = 2 - 1 = 1	A 1	2	Or gives new $\chi^2_{\rm calc}$
	Total		13	

MS04 - AQA GCE Mark Scheme 200. Mainscloud.com

Q	Solution	Marks	Total	Comments
6(a)	$H_0: \sigma^2 = 225 H_1: \sigma^2 \neq 225$	B1		Both
	v = 15 - 1 = 14	B1		
	$\chi_{14}^{2}(0.025) = 5.629$ $\chi_{14}^{2}(0.975) = 26.119$	B1		Both; or $F(\infty, 14) = 2.487$
	$\chi^2 = \frac{(n-1)s^2}{\sigma^2} = \frac{14 \times 9.1^2}{225} = 5.15$	M1 A1		$F_{\text{calc}} = \frac{225}{9.1^2} = 2.72$
	$5.15 < 5.629 \Rightarrow \text{Reject H}_0$			$2.72 > 2.487 \Rightarrow \text{Reject H}_0$
	Evidence to suggest that variance is not 225	A1√	6	
(b)	$\mathbf{H}_0: \boldsymbol{\sigma}_B^2 = \boldsymbol{\sigma}_G^2 \mathbf{H}_1: \boldsymbol{\sigma}_B^2 \neq \boldsymbol{\sigma}_G^2$	B1		Both
	$ \begin{cases} s_B^2 = 70.567 \\ s_G^2 = 14.25 \end{cases} $	B1		Both; or $s_B = 8.400$ $s_G = 3.7749$
	$F_{\text{calc}} = \frac{70.567}{14.25} = 4.95$	M1 A1√		AWRT; ✓ on variances
	$v_1 = 5 v_2 = 3$	B1		
	$F_{5,3} = 14.88$	B1		
	4.952 < 14.88			
	\Rightarrow Accept H ₀			
	Variances are equal	A 1√	7	
	Total		13	

			MS04 - AQA GCE Mark Scheme 200. Comments
			MS04 - AQA GCE Mark Scheme 200
			SCION
Solution	Marks	Total	Comments
$\sigma^2 = E(X_i^2) - \mu^2$		 I	
$\Rightarrow E(X_i^2) = \sigma^2 + \mu^2$	M1	l	
$Var(\overline{X}) = E(\overline{X}^2) - \mu^2 = \frac{\sigma^2}{n}$	M1M1		
$\Rightarrow E(\overline{X}^2) = \frac{\sigma^2}{n} + \mu^2$		3	AG
$nV = \sum_{i=1}^{n} X_i^2 - n\overline{X}^2$			
$\Rightarrow \mathrm{E}(nV) = \mathrm{E}\left\{\sum_{1}^{n} X_{i}^{2}\right\} - \mathrm{E}(n\overline{X}^{2})$	M1		
$= n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + n\mu^2\right)$	M1		
		l	
$\Rightarrow E\left(\frac{nV}{n-1}\right) = \sigma^2$	A1	3	
$E(X) = \frac{1}{2} (X_1 + X_2)$			
$V = \frac{1}{2} \left(X_1^2 + X_2^2 \right) - \frac{1}{4} \left(X_1 + X_2 \right)^2$	M1		or $E\left[\frac{1}{2}(X_1 - X_2)^2\right]$
$= \frac{1}{4} \left(X_1^2 - 2X_1 X_2 + X_2^2 \right)$			$= \frac{1}{2} E(X_1^2) - E(X_1 X_2) + \frac{1}{2} E(X_2^2)$
	A1		$= E(X_1^2) - \{E(X_1)\}^2$
$\frac{nV}{n-1} = \frac{2}{1} \times \frac{\left(X_1 - X_2\right)^2}{4}$	M1		$=\sigma^2 + \mu^2 - \mu^2$
$= \frac{1}{2} (X_1 - X_2)^2$	A1	4	$=\sigma^2 \Rightarrow$ unbiased
Total		10	
	Solution $\sigma^{2} = E(X_{i}^{2}) - \mu^{2}$ $\Rightarrow E(X_{i}^{2}) = \sigma^{2} + \mu^{2}$ $Var(\overline{X}) = E(\overline{X}^{2}) - \mu^{2} = \frac{\sigma^{2}}{n}$ $\Rightarrow E(\overline{X}^{2}) = \frac{\sigma^{2}}{n} + \mu^{2}$ $nV = \sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}$ $\Rightarrow E(nV) = E\left\{\sum_{i=1}^{n} X_{i}^{2}\right\} - E(n\overline{X}^{2})$ $= n(\sigma^{2} + \mu^{2}) - (\sigma^{2} + n\mu^{2})$ $= (n-1)\sigma^{2}$ $\Rightarrow E\left(\frac{nV}{n-1}\right) = \sigma^{2}$ $E(X) = \frac{1}{2}(X_{1} + X_{2})$ $V = \frac{1}{2}(X_{1}^{2} + X_{2}^{2}) - \frac{1}{4}(X_{1} + X_{2})^{2}$ $= \frac{1}{4}(X_{1}^{2} - 2X_{1}X_{2} + X_{2}^{2})$ $= \frac{1}{4}(X_{1} - X_{2})^{2}$ $\frac{nV}{n-1} = \frac{2}{1} \times \frac{(X_{1} - X_{2})^{2}}{4}$ $= \frac{1}{2}(X_{1} - X_{2})^{2}$	$\sigma^{2} = E(X_{i}^{2}) - \mu^{2}$ $\Rightarrow E(X_{i}^{2}) = \sigma^{2} + \mu^{2}$ $M1$ $Var(\overline{X}) = E(\overline{X}^{2}) - \mu^{2} = \frac{\sigma^{2}}{n}$ $nV = \sum_{1}^{n} X_{i}^{2} - n\overline{X}^{2}$ $\Rightarrow E(nV) = E\left\{\sum_{1}^{n} X_{i}^{2}\right\} - E(n\overline{X}^{2})$ $= n(\sigma^{2} + \mu^{2}) - (\sigma^{2} + n\mu^{2})$ $= (n-1)\sigma^{2}$ $\Rightarrow E\left(\frac{nV}{n-1}\right) = \sigma^{2}$ $A1$ $E(X) = \frac{1}{2}(X_{1} + X_{2})$ $V = \frac{1}{2}(X_{1}^{2} + X_{2}^{2}) - \frac{1}{4}(X_{1} + X_{2})^{2}$ $= \frac{1}{4}(X_{1}^{2} - 2X_{1}X_{2} + X_{2}^{2})$ $= \frac{1}{4}(X_{1} - X_{2})^{2}$ $A1$ $\frac{nV}{n-1} = \frac{2}{1} \times \frac{(X_{1} - X_{2})^{2}}{4}$ $A1$ $Total$	Solution Marks Total $\sigma^2 = E(X_i^2) - \mu^2$ $\Rightarrow E(X_i^2) = \sigma^2 + \mu^2$ M1 $Var(\overline{X}) = E(\overline{X}^2) - \mu^2 = \frac{\sigma^2}{n}$ M1M1 $\Rightarrow E(\overline{X}^2) = \frac{\sigma^2}{n} + \mu^2$ 3 $nV = \sum_{1}^{n} X_i^2 - n\overline{X}^2$ M1 $\Rightarrow E(nV) = E\left\{\sum_{1}^{n} X_i^2\right\} - E(n\overline{X}^2)$ M1 $= n(\sigma^2 + \mu^2) - (\sigma^2 + n\mu^2)$ M1 $= (n-1)\sigma^2$ A1 $\Rightarrow E\left(\frac{nV}{n-1}\right) = \sigma^2$ A1 $E(X) = \frac{1}{2}(X_1 + X_2)$ M1 $= \frac{1}{4}(X_1^2 - 2X_1X_2 + X_2^2)$ M1 $= \frac{1}{4}(X_1 - X_2)^2$ A1 $\frac{nV}{n-1} = \frac{2}{1} \times \frac{(X_1 - X_2)^2}{4}$ M1 $= \frac{1}{2}(X_1 - X_2)^2$ A1 A1 4